
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 28 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713646857

Single-Particle Scattering Approximation for the Pair Function of an
Electron Liquid
Andreas Schinnera

a Institut für Theoretische Physik, Johannes Kepler Universität, Linz, Austria

To cite this Article Schinner, Andreas(1993) 'Single-Particle Scattering Approximation for the Pair Function of an Electron
Liquid', Physics and Chemistry of Liquids, 25: 2, 81 — 90
To link to this Article: DOI: 10.1080/00319109308030349
URL: http://dx.doi.org/10.1080/00319109308030349

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713646857
http://dx.doi.org/10.1080/00319109308030349
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Phys. Chem. Liq., 1993, Vol. 25, pp. 81-90 
Reprints available directly from the publisher 
Photocopying permitted by license only 

0 1993 Gordon and Breach Science Publishers, S.A. 
Printed in the United States of America 

SINGLE-PARTICLE SCATTERING 
APPROXIMATION FOR THE PAIR FUNCTION OF 

AN ELECTRON LIQUID 
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AltenbergerstraDe 69, A-4040 Linz, Austria 

(Received 22 April 1992) 

The static pair correlation function of the three-dimensional homogeneous electron gas at given tempera- 
ture and density is estimated by the scattering of non-interacting particles in an effective potential. Within 
a generalized Thomas-Fermi approximation the resulting self-consistency conditions can be reduced to 
a simple linear differential equation. The influence of temperature and interaction on the short-range 
correlations is investigated extensively. The comparison with ground-state Monte-Carlo calculations shows 
an excellent conformity at metallic densities. 

KEY WORDS: Jellium, nonzero temperature, pair function, effective interaction 

1 INTRODUCTION 

The pair correlation function g(r) of the homogeneous jellium system has been studied 
intensively since the early beginning of the electron gas theory. It is defined as the 
probability of finding two electrons separated by a given distance r,  and thus reflects 
the structural complexity of the many-particle system. After four decades of develop- 
ment in this field various approximations are available that satisfactorily describe 
more or less properties of this function at zero temperature’: 

Approaches using the dielectric formalism are based on a truncated energy and 
momentum excitation balance. Well known representatives of this class are 
the Random-Phase-Approximation (RPA)’, the Singwi-Tosi-Land-Sjolander theory 
(STLS)3, and the diagrammatic analysis by Y a ~ u h a r a ~ , ~ .  Most of these models, 
however, (with the exception of Yasuhara’s theory) significantly overestimate the 
short-range correlations at metallic densities. Consequently, other methods have been 
introduced to overcome this problem, as, for example, the very successful Fermion 
Hypernetted Chain theory (FHNC)6 or the Pseudoclassical Approach’. 

Although one can say that the static ground-state correlations of the completely 
degenerate Fermion system are hence well understood, the situation is getting much 
worse when going to nonzero temperature: Only a few generalizations of well 
established approximations are yet available for this problern8-l0. 
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82 A. SCHINNER 

Additionally, an interesting new effect has been discovered recently by Schweng 
et al.”: Studying the temperature dependence of the short-range correlations in 
various approximations they found that g(0 )  does not increase monotonically with 
increasing temperature, as one would expect. Instead, a decrease is found for small 
temperatures. The physical mechanisms behind this are temperature-dependent 
screening effects, as could be shown clearly within a single-particle model of the 
real-space scattering balance’’. 

This success of a relatively simple approach gives strong evidence that it might 
pay to take a closer look at approximations, which describe the short-range 
correlations as a tunneling probability of quasi-free electrons in an effective, self- 
consistently determined potential. The main objective of this work will be the 
development and analysis of such a model. 

This paper is organized as follows: In Section 2 the basic assumptions of a 
Single-Particle Scattering Approximation (to be referred to as “SPSA” throughout 
this paper) for the pair correlation function will be discussed. Writing down the 
self-consistency equations several limiting cases can already be evaluated. 

In Section 3 it is shown that an additional linearization step transforms the 
self-consistency problem into an almost analytically solvable equation. This makes it 
possible to explicitly analyse the competing physical effects that are responsible for 
the temperature dependence of g(r). 

Various numerical results of this approximation will be presented in Section 4, 
and a brief discussion in Section 5 ends this paper. 

2 BASIC ASSUMPTIONS 

Coarsely spoken, the basic principle of a Single-Particle Scattering Approximation 
(SPSA) for the static pair correlations is the following: Within the interacting electron 
gas one electron at  the (arbitrarily chosen) origin is considered to be the source of 
an effective single-particle potential, in which the (approximative mutually non- 
interacting) collective is “moving”. It is then reasonable to assume that the effective 
interaction is determined by the radial charge distribution around the origin, which 
itself is given by 1 - g(r). This immediately leads to Poisson’s equation 

AU(x)  = -8nars d(x) - i 
In Eq. (1) the following units have been used, as will be throughout the rest of this 
paper: Distances are measured in the inverse Fermi momentum kp while energies 
are given in Fermi energies EF.  The usual density parameter rs is connected with the 
average density no by the relation rs := a;1($tn0)-1’3;  ug denotes the Bohr radius. 
Furthermore, a is an abbreviation for (4/9n)’I3. 

The term proportional to 6(x) is the point-charge density of the electron at the 
origin and causes U(x) to behave like a bare Coulomb potential for x + 0, while the 
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PAIR FUNCTION OF ELECTRON LJQUID 83 

“1” in the square brackets takes into account the uniform, positive background of 
the jellium model. 

Now, there are several possibilities to close the approximation, i.e. to write down 
the pair correlation function g(x) as a functional of the effective interaction U(x). For 
example, a very interesting way has been proposed by Dawson and March, who 
expressed the pair function in terms of the p-component of the electron density 
matrix”-”. 

Within the present work, however, another, perhaps more obvious method will be 
used: The electron that is “carrying” the effective single-particle potential can be 
interpreted as an “impurity”, embedded in a free electron liquid. One then can take 
advantage from the analysis by March and Murray14, and write down the 
expressions : 

1 
2 X 2  

{$ + k 2  - - U(X)  - ~ 

a2 

n(x(  U )  = c (21 + l)n,(x) U). 
l = O  

Eq. (2) just is the radial part of Schrodinger’s equation; the factor ‘‘t” beside the 
potential U(x) is caused by the fact that the “impurity” has electron mass too. Eq. 
(3)  defines the radial density components n, (in units of no); n:(& p) denotes the free 
Fermi distribution at reduced temperature 0 = k,T/E, and (free) chemical potential 
p. The quantity t l (k )  as defined by Eq. (4) takes into account the correct normalization 
of the wave function. Finally, summing up the partial density components one obtains 
the total density of the free electron liquid in the presence of a single-particle potential 

The final step, however, is the most critical one, namely, the connection between 
n(xlU) from Eq. (5) and the (approximated) pair function. Writing down the 
spin-parallel and -antiparallel pair functions as a decomposition into their free 
counterparts and an unknown functional of the density 

U(X). 

it is clear that F,,[O; x] = F,,[O; x] = 1 is necessary to correctly obtain the high- 
density limit. Since gT &) does not contribute to the short-range correlations, 
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84 A. SCHINNER 

as a first attempt F, ,  will be set to “1”. Further simplification can be achieved 
when substituting the remaining functional by a function of n(x) - 1, and then 
expanding this function up to the first order. This finally leads to 

where the remaining expansion coefficient has been set to “ l” ,  in order to obtain 

in accordance with Eq. (25) of Ref. [lo]. go(x) denotes the free spin-averaged pair 
function. (The temperature dependence of go(x) will be omitted for brevity). 

Although the steps leading to Eq. (7) somehow might have the flavour of a 
magician’s trick, there are justifying arguments for them when looking at the system 
at a certain “mesoscopic” level: The ansatz Eq. (6) then is a factorization of 
expectation values into a (free) statistical part and a factor that accounts for the 
interaction effects. Linearizing the functional corresponds to a weak-coupling expan- 
sion, and substituting the functional by a function means neglecting some delocalisa- 
tion effects (the functional’s kernel is set to a delta-function). The reader, however, 
should be aware of the fact that the ansatz Eq. (7) indeed might be the simplest, but 
most probably not the optimal ansatz for a SPSA. 

Nevertheless, it is the intention of this work to investigate the simplest possible 
case, which, as we shall see, already leads to remarkable results. 

Now, combining Eqs. (2H5) with Eq. (7), in principle, reduces the problem to a 
numerical one. Three important results, however, can be derived immediately: 

i) One of the most striking features of a SPSA obeying Eq. (8) perhaps is the fact 
that 

g ( r )  > 0 (9) 

exactly holds. 
ii) Looking at the x -+ 0 behaviour of Eqs. (2H5) it is easily seen that 

as long as U(x -+ 0) behaves like a bare Coulomb potential. Inserting this into Eq. 
(7) proves that Kimball’s relation’ 

d(0) = zr,g(O) (1 1 )  

is exactly fulfilled by the present approximation. 
iii) Evaluating Eq. (8) using Born’s first-order approximation yields for 6 = 0: 
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PAIR FUNCTION OF ELECTRON LIQUID 85 

with j,(x) being the first-order spherical Bessel function. Inserting the free pair 
function into the right-hand side of Eq. (l), and combining its solution with Eq. (12) 
leads to 

(13) g(0) 1: f - 0.4347 . rs + O(r:). 

Comparing Eq. (13) with the exact high-density expansion obtained by KimballI6 

g(0) = - 0.3658 . r, + S(P,'. In rs), (14) 

a good conformity is found. 

3 GENERALIZED THOMAS-FERMI APPROXIMATION 

In the previous section the basic assumptions leading to a typical Single-Particle 
Scattering Approximation have been pointed out. The remaining numerical problem, 
however, is somehow unwieldy, and it would be advantageous for a clear physical 
analysis if one could separate the calculation of U(x) from the evaluation of Eqs. 
(2)-(5). This can be achieved by using a generalized Thomas-Fermi approximation 
for the density equilibrium: 

Assuming a slowly varying potential U(x), Eqs. (2H5) can be reduced to 

n(xl U )  N nTF(xl U )  = 3 dk k2n; 0, p - - V(x) . r ( : )  
Furthermore, expanding Eq. (15) up to first order with respect to U(x) yields 

where S,O=,(O) denotes the static structure factor of the free system at momentum 
q = 0 and temperature 0, and is given by 

Introducing the abbreviations 

2 1  4 

3x 8 3x 
A(@' = ~ cIr, - S,O,,(O) and h(x) = -x[1 - go(x)], 

one finally obtains 

~ - A(0)' f ( x )  = h(x) 
[::2 ] 
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86 A SCHINNER 

for the screening factor Ax) that is defined as U(x) divided by a bare Coulomb 
potential. Obviously, Eq. (19) has to be completed by the boundary conditions 

leading to the solution 

where 

is the Green’s function of Eq. (19). 
The physical interpretation of Eq. (21) now is obvious: The approximated screening 

factor consists of an exponentially decaying term that is a pendant to the perfect- 
screening behaviour of the RPA, and a second term that decays obeying a power-law. 
I t  is the latter part that is producing overscreening effects, i.e..f(x) becomes negative 
for large x. It is especially noteworthy that for zero temperature 

holds (qTF is the Thomas-Fermi screening vector). Thus, the present result differs 
in two important points from the usual Thomas-Fermi approach: (i) One factor 
“t” in Eq. (23) stems from the reduced electron mass (confer Eq. (2)). (ii) The second 
factor “f” in Eq. (23) and the additional integral term in the solution Eq. (21) are 
consequences of the “functional”-ansatz Eq. (7). 

Finally, the qualitative temperature dependence of f(x) can be seen directly from 
Eq. (21): A(0) varies very slowly with respect to 0 as long as 0 5 1, and for 8 + 1 it 
vanishes like I / @  (confer Eq. (18)). Within the main region of interest (0 I I )  one 
therefore can set i(0) E.(O) and just take into account the temperature dependence 
of the inhomogeneity h ( x ) .  With increasing 8 the free pair function tends to its classical 
counterpart (which is simply equal to one) and consequently h(x)  will vanish. Thus, 
the range of the potential barrier V ( x )  is increased, which lowers the tunneling 
probability of the electrons, and decreases y(0). On the other hand, however, the 
mean kinetic energy of the gas is also increased with increasing 8, which again rises 
the tunneling probability (confer Eq. (3)). 

Now, it is not a priori clear, which one of these two competing effects is going to 
win for a given temperature and coupling strength. The analysis of Schweng et a/.” 
has shown that the negative slope in the temperature behaviour of g(0) is present for 
small 0, when neglecting second-order terms with respesct to rs .  It is interesting to 
learn from Eq. (21) that higher-order interaction terms indeed can cancel this effect, 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
5
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



PAIR FUNCTION OF ELECTRON LIQUID 87 

since the exponential term in Eq. (21) provides an upper boundary for f(x). Con- 
sequently, the “thickness” of the potential barrier cannot be increased too much with 
increasing 8, when r, (and A with it) tends to infinity. 

4 NUMERICAL ANALYSIS 

Combining Eqs. (18), (21) and (22) the screening factorf(x) can easily be obtained. 
With the resulting potential U(x) one has to solve Eqs. (2H5) and (7). From the 
computational point of view this is a much more complicated task, since it involves 
the numerical solution of Schrodinger’s equation (Eq. (2)) for an (almost) arbitrary 
U(x). Thereby one has to overcome the problem of round-off errors that are mixing 
parts of the’ divergent solution of Eq. (2) to the desired non-divergent one. These 
numerical instabilities cause standard one-step integration methods to fail. An implicit 
Runge-Kutta algorithm of Gaussian type (order m = 2, consistency order p = 4)” 
has turned out to be sufficiently stable as well as fast. The remaining integral and 
sum can be easily carried out, although they are rather time-consuming. In this 
context it is especially noteworthy that for the calculation of g(0) only the I = 0 term 
of the sum in Eq. (5 )  is necessary, since nl(x) is proportional to x2’ as x + 0. 

In Figure 1 the r,-dependence of g(0) at zero temperature is compared with the 
results of Yasuhara’s theory5. A very good conformity is found, even in the low- 
density regime. This is especially remarkable, since the derivation of Eq. (19) involved 
an additional small-r, expansion step. 

In Figure 2 the deviation of g(0,O) from the interaction-free value ‘‘i” 

3 
I I 

0 2 4 6 8 
TS 

Figure 1 
(solid line) and the Yasuhara theory’ (dashed line). 

The pair correlation function g(r = 0) at zero temperature versus rr from the present calculations 
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0.00 0.20 0.40 0.60 0.80 1.00 

0 
Figure 2 
versus temperature 8 (confer Eq. (24)). Solid line: r ,  = 0.01; dashed line: r, = 0.1; dash-dotted line: r, = 1. 

Correction term to the result of the free pair correlation function at zero particle separation 

divided by rs is plotted versus temperature for various rs .  The curve corresponding 
to Y, = 0.01 already is almost identical to the result in Figure 5 of Ref. [lo], where 
an explicit first-order expansion has been carried out. Furthermore, it is seen that 
increasing r7 indeed reduces the “negative-slope effect”, until at r ,  = 1 the resulting 
g(0) within the numerical accuracy is monotonically increasing with increasing 8. For 
extremely high r,-values the effect is (very weakly) appearing again, since the 

1 .oo- 

0.80. 

0.60. 

0.40. 

0.20 

0.00 

0 
I I I I I I 1 I I 

10 1.00 2.00 3.00 4.00 5.00 

Figure 3 The pair correlation function g(r) (solid line) and the screening factor f ( r )  (dashed line) at zero 
temperature versus k,r, calculated from the present approximation. The squares are the results of a 
Monte-Carlo simulation; the data have been taken from Figure 3 of Ref. 1193. 
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PAIR FUNCTION OF ELECTRON LIQUID 89 

4 
0.00 

0 1 2 3 

Figure 4 The pair correlation function g(r)  at rs = 2 versus k,r. The curves correspond to the temperatures 
0 = 0 (solid line), 0 = 1 (dashed line), and 0 = 5 (dash-dotted line). 

@-dependence of i must be taken into account in this case. It is, however, at least 
questionable to extend the present approximation on to that region. 

The corresponding results for the complete g(r) at rs = 3 and 8 = 0 are shown in 
Figure 3. The conformity with a Monte-Carlo calculation'* is excellent (the MC- 
values have been taken from Figure 3 of Ref. [19]). However, it should be mentioned 
that the situation becomes less satisfactory when going to very high values of the 
coupling parameter, rs zz 100: The overscreening effects in Ax) are too weak to 
produce the significant large-x oscillations that are announcing the Wigner crystal- 
lisation2O. Again one should bear in mind that this extreme region is beyond the scope 
of the present approximation. 

Finally, g(r) at r, = 2 is plotted for various temperatures in Figure 4. 

5 CONCLUSIONS 

In the previous sections it has been shown that the simple Single-Particle Scattering 
Approximation presented here already provides a surprisingly realistic description of 
the static pair correlations at  arbitrary temperature. And this even, although the full 
self-consistency problem has been substituted by a Thomas-Fermi like approach, 
which, in principle, is used here outside the region of validity for such a quasiclassical 
approximation. A comparison of the present results with the numerical solution of 
the full self-consistency equations, however, justifies this simplification, as will be 
published in the near future. 

Despite of its undeniable success the present concept of SPSA, of course, does have 
its disadvantages, too: The problem with the unrealistic large-x behaviour at 
extremely low densities has already been discussed earlier. Closely related with this 
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90 .4. SCHINNER 

is the unpleasant fact, that the ansatz Eq. (7) does not guarantee the normalization 
condition 

(often referred to as “sequential relation”) to be fulfilled exactly. (It should be 
noticed that the integral over n(x)  - 1 in Eq. (7) is proportional to the total displaced 
charge, which itself is, within first-order perturbation theory, proportional to the 
interaction volume”.) Although the deviations from the exact fulfillment of the 
sequential relation are neglectable for practical purposes, this fact gives strong 
evidence that the replacement of Eq. (7) by a more sophisticated ansatz might be 
rewarding. 

Of course, even using an optimal functional instead of Eq. (7) the SPSA still will 
neglect many-particle effects. Consequently, the question is still pending, whether the 
complex interplay of temperature and interaction dependencies leading to g(0,e) is 
modeled realistically enough by looking at a tunneling process only. It will be an 
important as well as extensive task to answer this question within a reliable 
first-principles theory, most probably an evaluation of the bdder-diagram sum for 
nonzero temperature. 
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